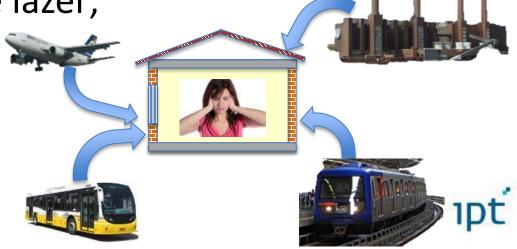

O Mapeamento de Ruído como Instrumento para Planejamento Metropolitano

Eng. Dr. Fulvio Vittorino

(11) 3767-4553

fulviov@ipt.br

www.ipt.br

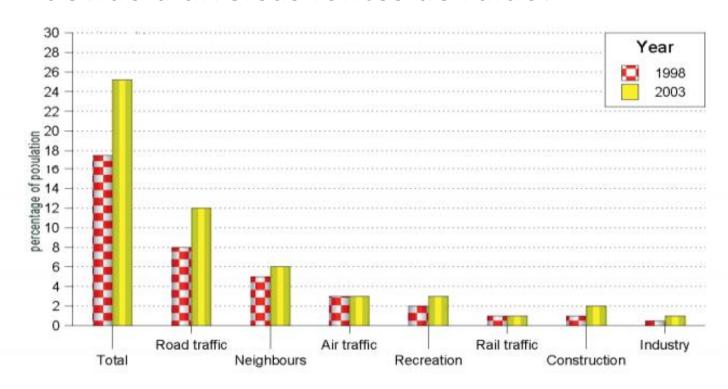


O crescimento da urbanização gera:

O crescimento da urbanização gera ruído devido a:

- Aumento das atividades de produção;
- Aumento da circulação de veículos;
- Adensamento dos espaços, aproximando fontes de ruído e receptores;
- Mais atividades de lazer;
- Etc.

Males causados por ruído ambiental


 Pesquisa da OMS, apontou o seguinte impacto em termos de Déficit cognitivo em crianças:

Aumento de L _{dn} [dB]	Impacto na população
De 55 para 65	Atinge 20%
De 65 para 75	45% a 50%
Acima de 75	70% a 85%

Males causados por ruído ambiental

- Distúrbio do sono
 - Estudo realizado na Holanda indica a porcentagem da população que sofre com distúrbios de sono devido a diversas fontes de ruído:

Males causados por ruído ambiental

- Doenças cardiovasculares
 - Pesquisa da OMS estimou que é a causa de 1,8% dos infartos do miocárdio ocorridos na Europa Ocidental (2010).
 - Na Alemanha, esse índice sobre para 2,9%, o que corresponde a 1630 casos por ano.

Comparação:

Mortes no estado de São Paulo por AIDS em 2011: 3006

Mortes na cidade de São Paulo por acidentes de trânsito, em 2012: 1231

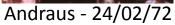
Ruído → Stress → Aumento de Pressão → Infarto.

Em casos extremos...

Briga entre vizinhos por barulho deixa três mortos em Santana de Parnaíba.

Empresário matou casal a tiros e se matou em seguida em condomínio de luxo de Tamboré.

- Fonte: http://www.estadao.com.br/noticias/cidades,briga-entre-vizinhos-por-barulho-deixa-tres-mortos-em-santana-de-parnaiba,1035192,0.htm
- Acessado em 25/05/2013



Década de 1970

Fato

Joelma 01/02/74

Legislação de Segurançacontra incêndio

Minhocão - 25/01/71

Primeira Lei do Silêncio

LEI № 8.106, DE 30 DE AGOSTO DE 1974

Dispõe sobre sons urbanos, fixa níveis e horários em que será permitida a sua emissão nas diferentes zonas de uso e atividades, e dá outras providências.(Regulamentada)(Revogada)

- Regulamentada pelo DM 11.467/74
- Revogada no que for incompatível pela LM 11.501/94
- Revogada totalmente pela LM 11.804/95
- Mantidas as disposições pela LM 13.885/04

CAPÍTULO I – DISPOSIÇÕES PRELIMINARES

- Art. 1º É proibido perturbar o sossego e o bem-estar públicos e da vizinhança com sons de qualquer natureza que ultrapassem os níveis previstos para as diferentes zonas de uso e horários, na presente Lei e seus regulamentos.
- Fonte: http://www.prefeitura.sp.gov.br/cidade/secretarias/habitacao/plantas_on_line/legislacao/index.php?p=6515

Legislações do Município

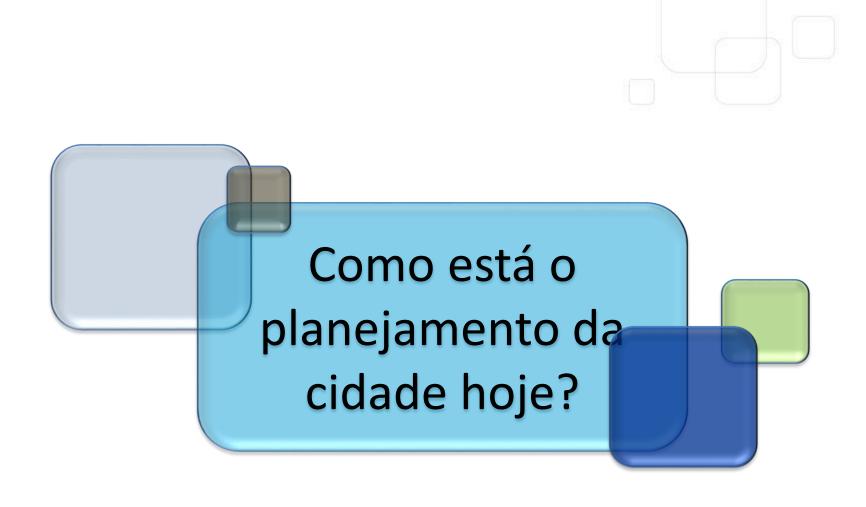
- DECRETO Nº 34.741, DE 09 DE DEZEMBRO DE 1994:
 - Regulamenta a Lei nº 11.501, de 11 de abril de 1994. → Prevalência da exigência mais restritiva
- LEI Nº 11.804, DE 19 DE JUNHO DE 1995:
 - Dispõe sobre avaliação da aceitabilidade de ruídos na Cidade de São Paulo, visando o conforto da comunidade. Revoga a Lei 8.106, de 30 de agosto de 1974 e seu Decreto Regulamentar 11.467, de 30 de outubro de 1974. → NBR 10.151

DECRETO N.º 34.569, DE 6 DE OUTUBRO DE 1994

- Art. 1º Fica instituído no âmbito municipal, o Programa Silêncio Urbano - PSIU, cujos objetivos são:
 - I desenvolver ações intersecretariais voltadas para coibir a emissão excessiva de ruídos;
 - II estabelecer canais de comunicação entre a população e a Prefeitura para recebimento de denúncias, quanto a emissão excessiva de ruídos;
 - III desenvolver estudos e formular propostas dirigidas para dotar a Prefeitura dos meios necessários ao efetivo controle da emissão de ruídos;
 - IV incentivar a capacitação de recursos humanos para exercer o controle de emissão de ruídos;
 - V estabelecer alvos prioritários e o cronograma das ações necessárias;
 - VI divulgar, junto à população, matéria educativa e conscientizadora dos efeitos prejudiciais causados pelos ruídos excessivos;

Legislações do Município

- LEI N.º 12.879, DE 13 DE JULHO DE 1999 -Lei da uma hora: Determina o uso de <u>isolamento</u> acústico para trabalharem além da 1h da madrugada.
- LEI Nº 15.133 DE 15 DE MARÇO DE 2010:
 - Dispõe sobre o controle da poluição sonora emitida em locais de reuniões e o escalonamento das multas e dá outras providências. → NBR 10.151



Em resumo

 Há uma forte preocupação com o ruído urbano presente na legislação municipal da cidade de São Paulo.

 A atual abordagem prioriza a fiscalização de estabelecimentos, a partir de reclamações e não uma abordagem de largo espectro, necessária para planejamento metropolitano, considerando o ruído.

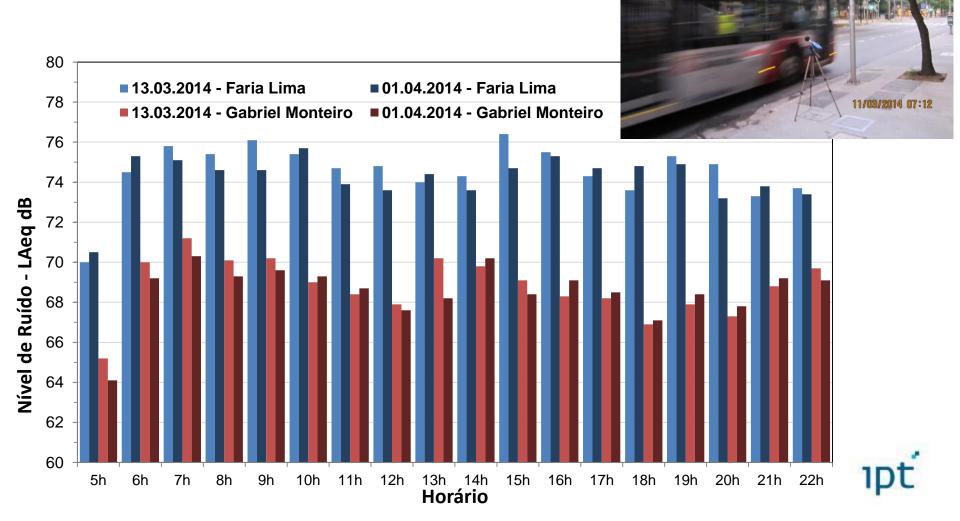
LEI Nº 13.885, DE 25 DE AGOSTO DE 2004

- Estabelece normas complementares ao Plano Diretor Estratégico, institui os Planos Regionais Estratégicos das Subprefeituras, dispõe sobre o parcelamento, disciplina e ordena o Uso e Ocupação do Solo do Município de São Paulo.
- Art. 177. A definição dos parâmetros de incomodidade para usos nR referidos no inciso I do artigo 174 e para usos R, tem como objetivo assegurar que:

Limites estabelecidos na LEI Nº 13.885, 25/08/04

ZONA	Limite de Emissão de Ruído - NCA	Período	
PREDOMINANTEMENTE INDUSTRIAL - ZPI	Vias locais: Diurno ≤ 65 dB Noturno ≤ 55 dB		
	Vias coletoras e estruturais: Diurno ≤ 70 dB Noturno ≤ 60 dB		
CENTRALIDADE LINEAR POLAR OU LINEAR			
ZCP, ZCL, ZCPp(a) e ZCLp(a)	Diurno ≤ 65 dB Noturno ≤ 55 dB		
ZM (MISTA) e ZMp	Noturno 2 33 dB	Diurno: 7 h a 22 h	
- VIAS ESTRUTURAIS N1(a) e N2		Noturno: 22 h a 7 h	
ZM e ZMp	Diurno ≤ 65 dB	110141110. 22 11 4 7 11	
- VIAS ESTRUTURAIS N3	Noturno ≤ 50 dB		
ZM e ZMp	Diurno ≤ 65 dB		
- VIAS COLETORAS	Noturno ≤ 45 dB		
	Na ZM-1 e ZMp		
	Diurno ≤ 55 dB		
ZM e ZMp	Noturno ≤ 45dB		
- VIAS LOCAIS	Na ZM-2 e ZM-3		
	Diurno ≤ 65 dB		
	Noturno ≤45 dB		
CENTRALIDADE LINEAR	Diurno ≤ 50 dB	Diurno: 7 h a 19 h	
ZCLz – I , ZCLz – II e ZER	Noturno ≤ 45dB	Noturno: 19 h a 7 h	

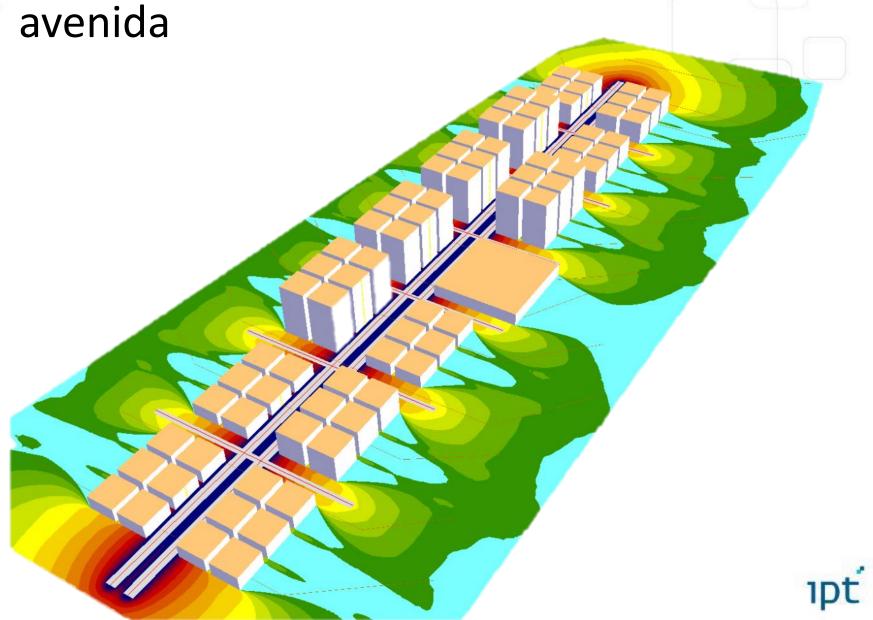
Algumas medições de Ruído Urbano, em São Paulo: 1978 x 2010


Via	L _{A eq} - 1978	L _{A eq} - 2010
Rua Teodoro Sampaio	78 dB	74 dB
Rua Brig. Gavião Peixoto	76 dB	75 dB
Rua Gaivota	65 dB	69 dB
Avenida Ibirapuera	77 dB	75 dB
Rua França Pinto	71 dB	69 dB
Avenida Domingos de Moraes	74 dB	72 dB

Medições com 10 min de duração em 2010 e 1h em 1978, em horários escolhidos aleatoriamente entre 8h e 17h.

Algumas medições de Ruído de Tráfego,

em São Paulo: 2014



Para refletir:

 Como estabelecer Planos de Bairro e Planos Estratégicos Regionais sem mapear o ruído?

Adensar habitações em torno de grandes eixos viários e ferroviários irá facilitar a mobilidade, mas... E quanto à exposição da população ao ruído de tráfego?

• Qual o impacto sonoro de novas avenidas nos bairros? Ilustração: Propagação de ruído de uma

Benefícios do MAPEAMENTO SONORO

- Caracterizar os locais em que o Nível de Ruído está acima do especificado pela legislação;
- Analisar o impacto, na paisagem sonora, de projetos de mudanças no tráfego rodoviário e ferroviário;
- Avaliar o impacto de novos grandes empreendimentos, como shoppings, arenas multiuso, etc.
- Simular cenários futuros com bases em planos de crescimento e urbanização, preservando áreas;
- Apoio à LPUOS e outras Leis;
- Simular o efeito de barreiras acústicas e outras medidas mitigadoras em pontos críticos.

Barreira Acústica Urbana Kobe - Japão

Barreira mista:

- Elementos transparentes embaixo
- Elementos fonoabsorventes em cima

Enclausuramento de viaduto urbano

Sopraelevata Aldo Moro, Genova, Liguria, Italia Ligação com a estrada A7 Milano Genoa

Intervenções Preventivas no Rio de Janeiro

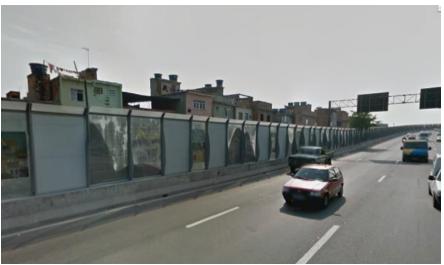
Túnel Acústico da PUC - Túnel Acústico Rafael Mascarenhas Autoestrada Lagoa-Barra- Inaugurado em 1971

Enclausuramento de viaduto urbano

Entrada Sentido Lagoa - Barra

Estrutura e pré-moldados em concreto usados como fechamento do túnel

Túnel Acústico da PUC - Túnel Acústico Rafael Mascarenhas Autoestrada Lagoa-Barra- Inaugurado em 1971


Barreiras Acústicas Urbanas

Avenida Presidente João Goulart - Linha Vermelha, no Rio de Janeiro

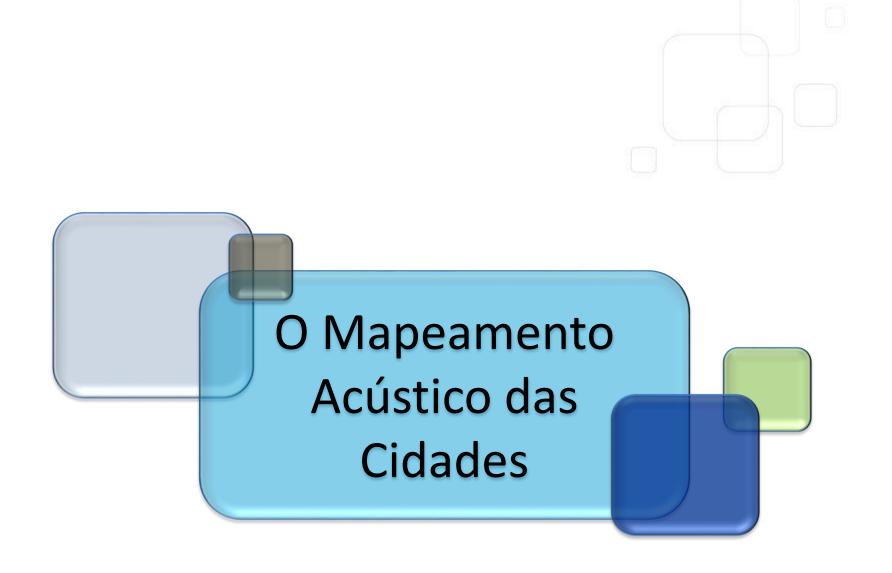
Estação Santos-Imigrantes do Metro SP

Outra demanda para um mapeamento sonoro

NBR 15.575 - Parte 1:

12.2 Requisito – Isolação acústica de vedações externas: Propiciar condições mínimas de desempenho acústico da edificação, com relação a fontes normalizadas de ruídos externos <u>aéreos</u>.

Valores Mínimos de Isolamento Sonora de Fachadas NBR 15575-4:2013


Classe de ruído	Localização da habitação	D _{2m,nT,w} dB	R _w dB*	Nível de desempenho
I	Habitação localizada distante de	≥ 20	≥25	M
	fontes de ruído intenso de quaisquer	≥25	≥30	
	naturezas.	≥30	≥35	S
II	Habitação localizada em áreas	≥25	≥30	M
	sujeitas a situações de ruído não	≥30	≥35	
	enquadráveis nas classes I e III	≥35	≥40	S
III	Habitação sujeita a ruído intenso de	≥30	≥35	M
	meios de transporte e de outras	≥35	≥40	I
	naturezas, <u>desde que esteja de</u> <u>acordo com a legislação</u>	≥40	≥45	S

NOTA: Os valores de desempenho de isolamento acústico medidos no campo ($D_{nT,w}$ e $D_{2m,nT,w}$) tipicamente são inferiores aos obtidos em laboratório (R_w). A diferença entres estes resultados depende das condições de contorno e execução dos sistemas (ver ISO 15712 e EN 12354).

Fonte: Tabela F.9 – Diferença padronizada de nível ponderada da vedação externa , $D_{2m,nT,w}$ para ensaios de campo e Tabela F.11 – Índice de redução sonora ponderado, R_w de fachadas, do anexo da NBR 15.575-4/2013

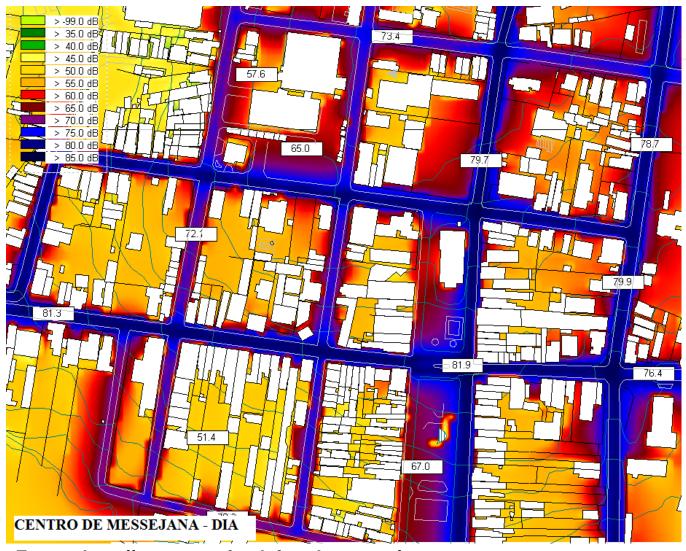
^{*} Rw com valores aproximados

Para poder projetar intervenções urbanas ou fachadas de edifícios é necessário conhecer a paisagem sonora local!

Princípios da Diretiva 2002/49/CE

- Na <u>União Europeia</u>, TODAS as aglomerações urbanas com mais de <u>250.000</u> habitantes devem estabelecer os mapas sonoros, considerando:
 - a infraestrutura de transporte (aéreo, rodoviário e ferroviário) e;
 - Indústrias e outras grandes fontes fixas.

Desenvolver planos de prevenção/mitigação do impacto sonoro = <u>Gestão</u> do Ruído.


Princípios da Diretiva 2002/49/CE

- Determinar a exposição ao ruído ambiente mediante a elaboração de mapas de ruído;
- Assegurar que a informação sobre ruído ambiente e seus efeitos seja disponibilizada ao público;
- Adotar planos de ação, com base nos resultados dos mapas de ruído, incluindo medidas de mitigação de seu impacto, quando necessário; e
- Preservação da qualidade ambiental sonora onde ela já é boa.

Mapeamento Sonoro de Paris Período diurno 6h – 18h Exposition de la population au bruit routier selon Findicateur Lday (61-15h) Intensité du brure 25,00% Très élevés angers. Elevão 18,00% 13,00% 5,00% Båtiments Emprises ferroviaires

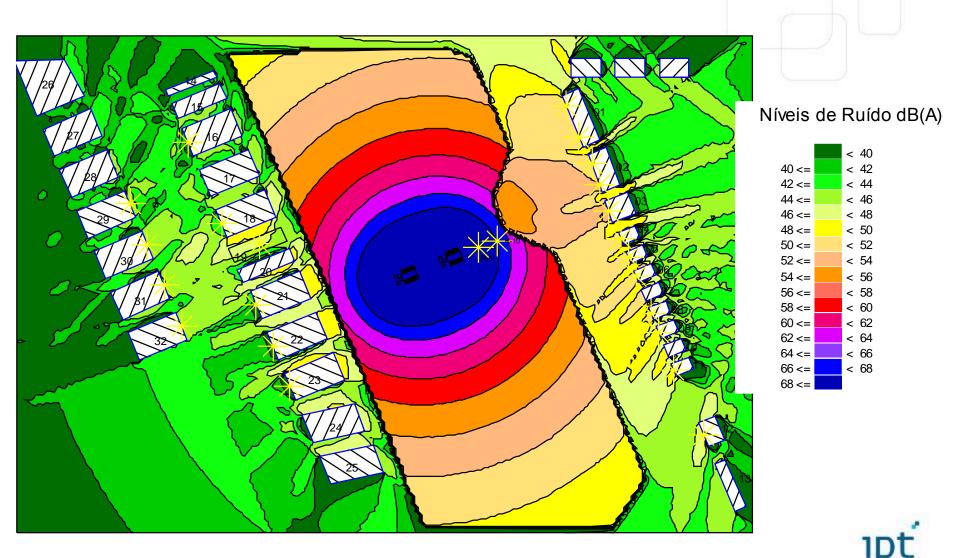
Parte do mapa acústico de Fortaleza

Fonte: http://cartaacusticadefortaleza.com/

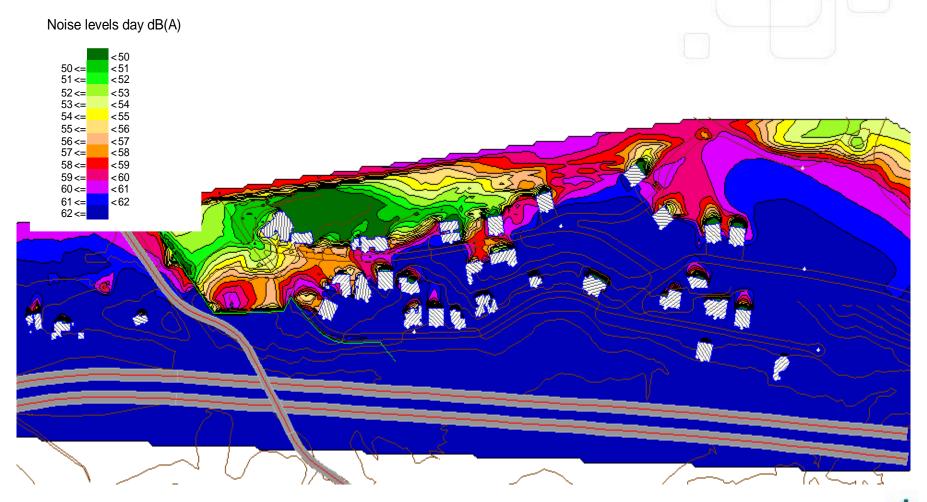
Acessado em 27/05/13

Outras cidades com mapa de ruído

- Além de Fortaleza, já foram elaborados mapas de ruído para:
 - Bogotá (2009);
 - Buenos Aires (2010);
 - Santiago, Chile (2011).

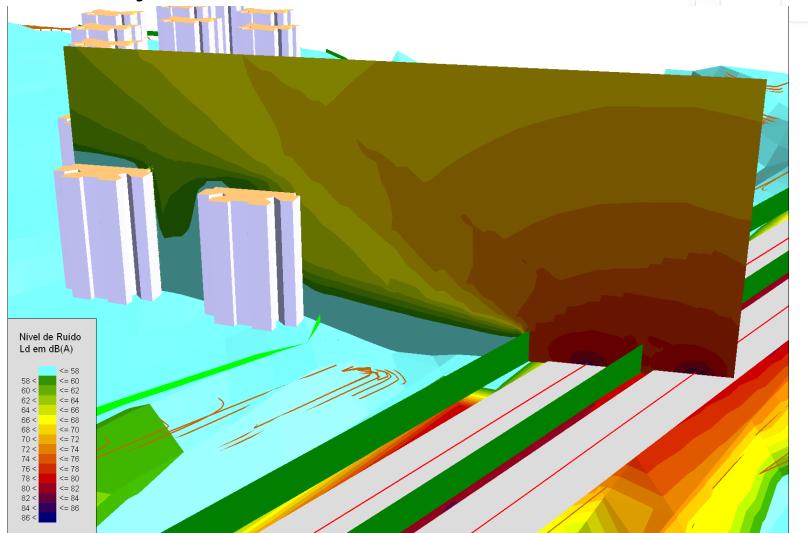


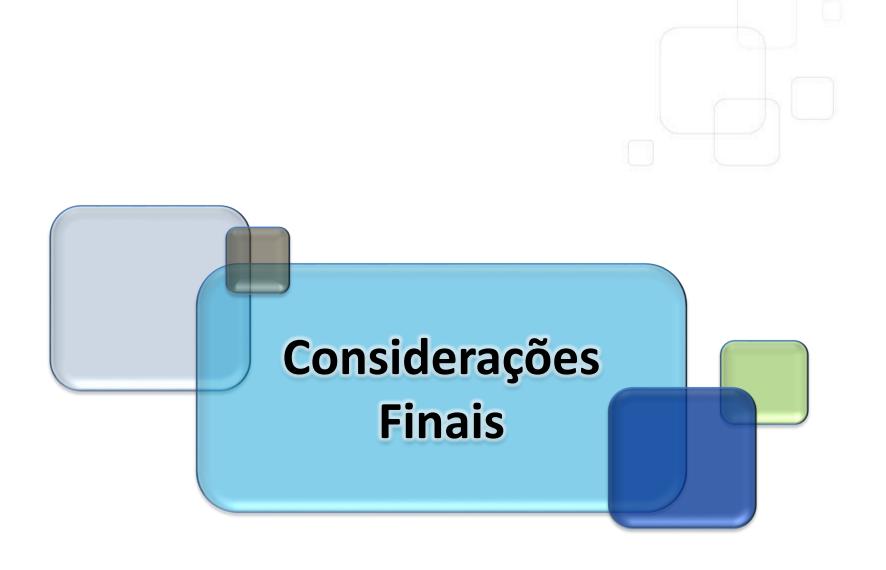
Apesar de não ser uma tarefa rápida, NÃO é uma prática utópica.


Como pode ser feito

- Medição
 Confiável, mas muito longo e impossível de utilizar para estudos de cenários.
 - Na década de 1970, o IPT levou 3 anos para monitorar, por 24h, \pm 100 pontos.
- Misto → Caracterizar as principais fontes sonoras, como estradas e aeroportos e alimentar modelos de simulação. → Mais Adequado.

Exemplo: Impacto sonoro nas vizinhanças de uma estação transformadora de eletricidade


Exemplo: Impacto do ruído de tráfego sobre condomínio – caso 1



Exemplo: Impacto do ruído de tráfego sobre condomínio – caso 2

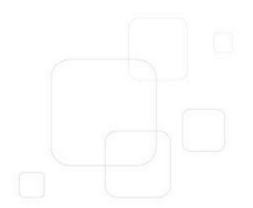
Projeto de barreiras acústicas

Mapeamento para Planejamento Metropolitano

- Para um adequado planejamento metropolitano, conhecer a paisagem sonora presente é fundamental.
 - Para se manter as atuais áreas "tranquilas" preservadas, novos empreendimentos devem ter seus impactos sonoros avaliados previamente e um mapa sonoro é um referencial "poderoso".
- Devemos iniciar o mapeamento o mais cedo possível e divulgar os resultados conforme estiverem disponíveis.
 - Planos de bairro; e
 - Planos estratégicos regionais.

Mapeamento para Planejamento Metropolitano

- Mapear toda a cidade de São Paulo é um trabalho de grande envergadura e para ser executado de forma ágil deve ser feito em parceria, seguindo uma coordenação central e com método comum.
- O apoio de outros órgãos da municipalidade é fundamental, como a CET.
- Devemos priorizar os grandes eixos viários e os futuros eixos de adensamento urbano, em discussão no plano diretor.



Outras frentes:

- O combate às irregularidades deve ser feito de forma persistente fortalecendo-se o PSIU;
- Revisão e consolidação da legislação;
- Criação de um fórum permanente para a discussão da questão do ruído urbano;
- Detalhar a forma de avaliar os impactos sonoros nos EIV/RIV; e
- Atuar de forma mitigadora onde já se tem grandes impactos sonoros.

Agradeço pela Atenção.

www.ipt.br